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Course information 2015–16 
EC2020 Elements of econometrics 
Econometrics is the application of statistical methods to the quantification and critical 
assessment of hypothetical economic relationships using data. This course gives students 
an opportunity to develop an understanding of econometrics to a standard that will 
equip them to understand and evaluate most applied analysis of cross-sectional data 
and to be able to undertake such analysis themselves.

Prerequisite 
If taken as part of a BSc degree, courses 
which must be passed before this course 
may be attempted:  
EC1002 Introduction to economics  
and 
ST104A Statistics 1 (half course) or  
ST104B Statistics 2 (half course)  
and  
MT1005A Mathematics 1 (half course) or 
MT1005B Mathematics 2 (half course) or 
MT1174 Calculus 

Aims and objectives  
The aims of this course are: 
 To develop an understanding of the use

of regression analysis and related
techniques for quantifying economic
relationships and testing economic
theories.

 To equip students to read and evaluate
empirical papers in professional journals.

 To provide students with practical
experience of using mainstream
regression programmes to fit economic
models.

Essential reading 
For full details please refer to the reading 
list. 
Dougherty, C. Introduction to Econometrics. 

(Oxford: Oxford University Press) 

Assessment 
This course is assessed by a three hour 
unseen written examination.

Learning outcomes 
At the end of the course and having completed the 
essential reading and activities students should be able to: 

 Describe and apply the classical regression model and 
its application to cross-section data. 

 Describe and apply the:  

• Gauss-Markov conditions and other assumptions
required in the application of the classical
regression model

• reasons for expecting violations of these
assumptions in certain circumstances

• tests for violations

• potential remedial measures, including, where
appropriate, the use of instrumental variables.

 Recognise and apply the advantages of logit, probit 
and similar models over regression analysis when 
fitting binary choice models.  

 Competently use regression, logit and probit analysis 
to quantify economic relationships using standard 
regression programmes (Stata and EViews) in simple 
applications.  

 Describe and explain the principles underlying the use 
of maximum likelihood estimation. 

 Apply regression analysis to fit time-series models 
using stationary time series, with awareness of some 
of the econometric problems specific to time series 
applications (for example, autocorrelation) and 
remedial measures.  

 Recognise the difficulties that arise in the application 
of regression analysis to nonstationary time series, 
know how to test for unit roots, and know what is 
meant by cointegration. 
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Syllabus 
This is a description of the material to be examined, as published in the Programme handbook. On 
registration, students will receive a detailed subject guide which provides a framework for covering the 
topics in the syllabus and directions to the essential reading 

This syllabus is intended to provide an explicit list of all the mathematical formulae and proofs that you 
are expected to know for the Elements of Econometrics examination.  You are warned that the 
examination is intended to be an opportunity for you to display your understanding of the material, 
rather than of your ability to reproduce standard items. 

Review: Random variables and sampling theory: Probability distribution of a random variable.  
Expected value of a random variable.  Expected value of a function of a random variable.  Population 
variance of a discrete random variable and alternative expression for it.  Expected value rules.  
Independence of two random variables.  Population covariance, covariance and variance rules, and 
correlation.  Sampling and estimators.  Unbiasedness.  Efficiency.  Loss functions and mean square error.  
Estimators of variance, covariance and correlation.  The normal distribution.  Hypothesis testing.  Type II 
error and the power of a test.  t tests.  Confidence intervals.  One-sided tests.  Convergence in 
probability and plim rules.  Consistency.  Convergence in distribution (asymptotic limiting distributions) 
and the role of central limit theorems. 

Simple regression analysis: Simple regression model.  Derivation of linear regression coefficients.  
Interpretation of a regression equation.  Goodness of fit. 

Properties of the regression coefficients: Types of data and regression model.  Assumptions for Model 
A.  Regression coefficients as random variables.  Unbiasedness of the regression coefficients.  Precision 
of the regression coefficients.  Gauss–Markov theorem.  t test of a hypothesis relating to a regression 
coefficient.  Type I error and Type II error.  Confidence intervals.  One-sided tests.  F test of goodness of 
fit. 

Multiple regression analysis: Multiple regression with two explanatory variables.  Graphical 
representation of a relationship in a multiple regression model.  Properties of the multiple regression 
coefficients.  Population variance of the regression coefficients.  Decomposition of their standard errors.  
Multicollinearity.  F tests in a multiple regression model.    Hedonic pricing models.  Prediction. 

Transformation of variables: Linearity and nonlinearity.  Elasticities and double-logarithmic models.  
Semilogarithmic models.  The disturbance term in nonlinear models.  Box–Cox transformation.  Models 
with quadratic and interactive variables.  Nonlinear regression. 

Dummy variables: Dummy variables.  Dummy classification with more than two categories.  The effects 
of changing the reference category.  Multiple sets of dummy variables.  Slope dummy variables.  Chow 
test.  Relationship between Chow test and dummy group test. 

Specification of regression variables: Omitted variable bias.  Consequences of the inclusion of an 
irrelevant variable.  Proxy variables.  F test of a linear restriction.  Reparameterization of a regression 
model (see the Further Material hand-out).  t test of a restriction.  Tests of multiple restrictions.  Tests of 
zero restrictions. 

Heteroscedasticity: Meaning of heteroscedasticity.  Consequences of heteroscedasticity.  Goldfeld–
Quandt and White tests for heteroscedasticity.  Elimination of heteroscedasticity using weighted or 
logarithmic regressions.  Use of heteroscedasticity-consistent standard errors. 

Stochastic regressors and measurement errors: Stochastic regressors.  Assumptions for models with 
stochastic regressors.  Finite sample and asymptotic properties of the regression coefficients in models 
with stochastic regressors.  Measurement error and its consequences.  Friedman's Permanent Income 
Hypothesis.  Instrumental variables (IV).  Asymptotic properties of IV estimators, including the 
asymptotic limiting distribution of ( )2

IV
2 β−bn  where IV

2b  is the IV estimator of 2 in a simple
regression model.  Use of simulation to investigate the finite-sample properties of estimators when only 
asymptotic properties can be determined analytically.  Application of the Durbin–Wu–Hausman test 

Simultaneous equations estimation: Definitions of endogenous variables, exogenous variables, 
structural equations and reduced form. Inconsistency of OLS.  Use of instrumental variables.  Exact 
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identification, underidentification, and overidentification.  Two-stage least squares (TSLS).  Order 
condition for identification.  Application of the Durbin–Wu–Hausman test. 

Binary choice models and maximum likelihood estimation: Linear probability model.  Logit model.  
Probit model. Maximum likelihood estimation of the population mean and variance of a random 
variable.  Maximum likelihood estimation of regression coefficients.  Likelihood ratio tests. 

Models using time series data: Static demand functions fitted using aggregate time series data.  Lagged 
variables and naive attempts to model dynamics.  Autoregressive distributed lag (ADL) models with 
applications in the form of the partial adjustment and adaptive expectations models.  Error correction 
models.  Asymptotic properties of OLS estimators of ADL models, including asymptotic limiting 
distributions.  Use of simulation to investigate the finite sample properties of parameter estimators for 
the ADL(1,0) model.  Use of predetermined variables as instruments in simultaneous equations models 
using time series data.  (Section 11.7 of the text, Alternative dynamic representations ..., is not in the 
syllabus) 

 Autocorrelation: Assumptions for regressions with time series data.  Assumption of the independence 
of the disturbance term and the regressors.  Definition of autocorrelation.  Consequences of 
autocorrelation.  Breusch–Godfrey lagrange multiplier, Durbin–Watson d, and Durbin h tests for 
autocorrelation.  AR(1) nonlinear regression.  Potential advantages and disadvantages of such 
estimation, in comparison with OLS.  Cochrane–Orcutt iterative process.  Autocorrelation with a lagged 
dependent variable.  Common factor test and implications for model selection.  Apparent 
autocorrelation caused by variable or functional misspecification.  General-to-specific versus specific-to-
general model specification. 

Introduction to nonstationary processes: Stationary and nonstationary processes.  Granger–Newbold 
experiments with random walks.  Unit root tests.  Akaike Information Criterion and Schwarz’s Bayes 
Information Criterion.  Cointegration.  Error correction models. 

Introduction to panel data models: Definition of panel data set (longitudinal data set).  Pooled OLS 
model.  Definition of, and consequences of, unobserved heterogeneity.  Within-groups fixed effects 
model.  First differences fixed-effects model.  Least squares dummy variable model.  Calculation of 
degrees of freedom in fixed effects models.  

Students should consult the Programme Regulations for degrees and diplomas in Economics, Management, Finance and the Social 
Sciences that are reviewed annually. Notice is also given in the Regulations of any courses which are being phased out and students 
are advised to check course availability. 
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Important note

This commentary reflects the examination and assessment arrangements for this course in the
academic year 2014–15. The format and structure of the examination may change in future years,
and any such changes will be publicised on the virtual learning environment (VLE).

Information about the subject guide and the Essential reading
references

Unless otherwise stated, all cross-references will be to the latest version of the subject guide (2014).
You should always attempt to use the most recent edition of any Essential reading textbook, even if
the commentary and/or online reading list and/or subject guide refer to an earlier edition. If
different editions of Essential reading are listed, please check the VLE for reading supplements – if
none are available, please use the contents list and index of the new edition to find the relevant
section.

Comments on specific questions – Zone A

Candidates should answer EIGHT of the following TEN questions: ALL of the questions in
Section A (8 marks each) and THREE questions from Section B (20 marks each). Candidates are
strongly advised to divide their time accordingly.

Section A

Answer all questions from this section.

Question 1

Explain the concept of consistency of an estimator. Show that in a simple regression
model of Yi on Xi, the ordinary least squares estimate of the slope is consistent.

(8 marks)

Reading for this question

Dougherty, C. Introduction to econometrics (4th edition) Chapters R.14 (Probability limits and
consistency) and 8.3 (Asymptotic properties of OLS regression estimators).

Gujarati, D.N. and D.C. Porter Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapter 3A.7 (Consistency of least-squares estimators).

Approaching the question

The definition of consistency is required, and the sufficient condition of consistency should also
be given. The probability limit or sufficient condition of consistency should be used to show the

5
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consistency of the OLS estimator of the slope. The solution is as follows:

Definition:

β̂ is a consistent estimator of β if:

lim
T→∞

P (|β̂ − β| > ε)→ 0

where ε is an arbitrarily small positive number. In short, plim β̂ = β.

The sufficient condition for consistency comprises:

i. E(β̂) = β or Asy. E(β̂)→ β.

ii. Var(β̂)→ 0 as T →∞, where T is the sample size.

If the sufficient condition holds, then the definition holds.

We now examine the consistency of the estimator of the slope parameter:

Let the model be:
Yt = β1 + β2Xt + ut; t = 1, 2, . . . , T.

The OLS estimator of β2 is:

β̂2 =

T∑
t=1

(Xt − X̄)(Yt − Ȳ )

T∑
t=1

(Xt − X̄)2
= β2 +

T∑
t=1

(Xt − X̄)(ut − ū)

T∑
t=1

(Xt − X̄)2

and:

plim β̂2 = β2 +

plim 1
T

T∑
t=1

(Xt − X̄)(ut − ū)

plim 1
T

T∑
t=1

(Xt − X̄)2
= β2 +

σXu
σ2
X

= β2 +
0

σ2
X

= β2 ⇒ consistent.

σXu is the population covariance between X and u, which by assumption is zero. σ2
X is the

population variance of X, and it is > 0.

Question 2

In the model
yt = αxt + ut; t = 1, 2, . . . , T

xt is an explanatory variable which can be regarded as fixed in repeated samples.

ut is an unobserved disturbance for which it is assumed that

E(ut) = 0

E(usut) = σ2 if s = t

= 0 if s 6= t

An estimator of α is 1
T

T∑
t=1

(
yt

xt

)
.

Under the assumptions above show that the estimator is unbiased and consistent.
Comment briefly on the efficiency of the estimator.

(8 marks)

6
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Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapters R.6 (Unbiasedness and
efficiency), R.14 (Probability limits and consistency) and 8.3 (Asymptotic properties of OLS
regression estimators).

Gujarati, D.N. and D.C. Porter. Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapter 3 A.7 (Consistency of least-squares estimators).

Approaching the question

The sufficient condition of consistency should be used to show the consistency of the given
estimator. The solution is as follows:

We have:

α̂ =
1

T

T∑
t=1

(
yt
xt

)
=

1

T

T∑
t=1

(
αxt + ut

xt

)
= α+

1

T

T∑
t=1

(
ut
xt

)
.

Hence:

E(α̂) = α+
1

T

T∑
t=1

E(ut)

xt
= α ⇒ unbiased.

To show consistency, the sufficient condition of consistency will be used. We have:

Var(α̂) = E
(
(α̂− α)2

)
= E

(
1

T

T∑
t=1

(
ut
xt

))2

= σ2 1

T 2

T∑
t=1

(
1

x2t

)
which will tend to zero as T →∞.

As the estimator is unbiased and also as the variance of the estimator tends to zero as T →∞,
the sufficient condition of consistency holds, hence the estimator is consistent. The given
estimator is not efficient because under the assumptions above the ordinary least squares
estimator is the most efficient estimator.

Question 3

(a) If a random variable X has a distribution with probability density function

f(x) = 1

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
, show that the maximum likelihood (ML) estimator

of the mean (µ) of the random variable X is the sample mean.

(4 marks)

(b) State the statistical properties of the ML estimators.

(4 marks)

Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapter 10.6 (An introduction to
maximum likelihood estimation).

Dougherty, C. Subject guide, Chapter 10 (Binary choice and limited dependent variable models,
and maximum likelihood estimation).

Approaching the question

(a) The log-likelihood function should be derived, and it should be differentiated with respect to
µ and equated to zero to obtain the ML estimator. The solution is as follows:

7
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The likelihood function is:

L =

n∏
i=1

1

σ
√

2π
exp

(
− (Xi − µ)2

2σ2

)
= (2πσ2)−n/2 exp

(
−
∑

(Xi − µ)2

2σ2

)
.

Hence, taking logs, we obtain the log-likelihood function:

lnL = −n
2

ln(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2.

To maximise lnL, differentiate with respect to µ, and set the partial derivative equal to
zero. We have:

∂ lnL

∂µ
=

1

σ2

n∑
i=1

(Xi − µ) = 0

which gives:

µ̃ =
1

n

n∑
i=1

Xi = X̄.

(b) The properties of ML estimators should be discussed as follows:

• ML estimators are consistent.

• ML estimators are invariant to the transformation of parameters. For example, if θ̂ is the
ML estimator of θ, then θ̂2 is the ML estimator of θ2. Similarly, if θ̂ is the ML estimator
of θ, then exp(θ̂) is the ML estimator of exp(θ).

• ML estimators are efficient in large samples in the sense that the variance of ML
estimators reaches the Cramer–Rao lower bound (CRLB) in large samples.

• ML estimators are asymptotically normally distributed.

• If a sufficient estimator exists, then the ML estimator is a function of the sufficient
estimator.

Question 4

Suppose that business expenditure for a new plant (Yt) is explained by the relation

ln(Yt) = α+ β ln(X∗t ) + ut,

where ut is a random variable, ln is the natural logarithm and X∗t is the level of
expected sales (which is unobserved) and is formed by

ln(X∗t )− ln(X∗t−1) = γ(ln(Xt−1)− ln(X∗t−1)).

Xt is the level of actual sales. Derive a linear relationship that can be used to
estimate α and β, using the observable variables Yt and Xt.

(8 marks)

Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapter 11.4 (Models with lagged
dependent variable).

Gujarati, D.N. and D.C. Porter. Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapter 17.5 (Rationalization of the Koyck model: The adaptive expectations model).

8
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Approaching the question

In order to get an estimable equation we need to eliminate the expected values from the
equation. First, multiply through by (1− γ) and lag to get a new equation, then subtract the
new equation from the original equation to get the result. The solution is as follows:

We have:
ln(X∗t )− (1− γ) ln(X∗t−1) = γ ln(Xt−1).

To get an estimable equation we need to eliminate the expected values from the equation. We
multiply through by (1− γ) and lag to get:

(1− γ) ln(Yt−1) = (1− γ)α+ (1− γ)β ln(X∗t−1) + (1− γ)ut−1.

Now subtract this from the original equation:

ln(Yt)− (1− γ) ln(Yt−1) = αγ + β(ln(X∗t )− (1− γ) ln(X∗t−1)) + (ut − (1− γ)ut−1)

= αγ + β(γ ln(Xt−1)) + (ut − (1− γ)ut−1)

or:
ln(Yt) = αγ + βγ ln(Xt−1) + (1− γ) ln(Yt−1) + (ut − (1− γ)t−1).

The parameters are estimated by non-linear techniques. If these procedures are not available,
then a grid search can be used where γ is given values between 0 and 1 in steps of 0.1, and the
remaining parameters are estimated using OLS.

Question 5

Discuss how dummy variables can be used to test

(a) change in intercept,

(3 marks)

(b) change in slope and,

(3 marks)

(c) changes in both intercept and slope.

(2 marks)

Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapters 5.1 (Illustration of the use of
a dummy variable) and 5.3 (Slope dummy variables).

Dougherty, C. Subject guide, Chapter 5 (Dummy variables).

Gujarati, D.N. and D.C. Porter. Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapter 9 (Dummy variable regression models).

Approaching the question

(a) Only intercept has changed.

Specify the model as:

Yt = β0 + β1Xt + αZt + ut; t = 1, 2, . . . , T (i)

where Zt is a dummy variable defined as:

Zt =

{
1 for war period

0 for peace period.

9
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Estimating (i) by OLS we get:

Yt = β̂0 + β̂1Xt + α̂Zt + ût; t = 1, 2, . . . , T. (ii)

From (ii), we can write two separate regressions for two different periods as:

Yt =

{
(β̂0 + α̂) + β̂1Xt + ût (war period) (iii)

β̂0 + β̂1Xt + ût (peace period). (iv)

To test whether the intercept has changed or not, the hypotheses are:

H0 : α = 0 (intercept has not changed).

H1 : α 6= 0 (intercept has changed).

This can be tested by a t test. If we do not reject H0, then we can apply OLS to
Yt = β0 + β1Xt + ut and get the estimated parameters. If H0 is rejected, then our estimated
equations for the two different periods are given by (iii) and (iv).

(b) Only slope has changed.

Specify the model as:

Yt = β0 + β1Xt + αXtZt + ut; t = 1, 2, . . . , T (v)

where Zt is a dummy variable defined as:

Zt =

{
1 for war period

0 for peace period.

Estimating (v) by OLS we get:

Yt = β̂0 + β̂1Xt + α̂XtZt + ût; t = 1, 2, . . . , T. (vi)

From (vi), we can write two separate regressions for two different periods as:

Yt =

{
β̂0 + (β̂1 + α̂)Xt + ût (war period) (vii)

β̂0 + β̂1Xt + ût (peace period) (viii)

To test whether the slope has changed or not, the hypotheses are:

H0 : α = 0 (slope has not changed).

H1 : α 6= 0 (slope has changed).

This can be tested by a t test. If we do not reject H0, then we can apply OLS to
Yt = β0 + β1Xt + ut and get the estimated parameters. If H0 is rejected, then our estimated
equations for the two different periods are given by (vii) and (viii).

(c) Intercept and slope both have changed.

Specify the model as:

Yt = β0 + β1Xt + α1Zt + α2XtZt + ut; t = 1, 2, . . . , T (ix)

where Zt is a dummy variable defined as:

Zt =

{
1 for war period

0 for peace period.

Estimating (ix) by OLS we get:

Yt = β̂0 + β̂1Xt + α̂1Zt + α̂2XtZt + ût; t = 1, 2, . . . , T. (x)

10
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From (x), we can write two separate regressions for two different periods as:

Yt =

{
(β̂0 + α̂1) + (β̂1 + α̂2)Xt + ût (war period) (xi)

β̂0 + β̂1Xt + ût (peace period) (xii)

To test jointly whether both intercept and slope has changed or not hypotheses are:

H0 : α1, α2 = 0 (both intercept and slope have not changed).

H1 : α1, α2 6= 0 (both intercept and slope have changed).

This can be tested by an F test. If we do not reject H0, then we can apply OLS to
Yt = β0 + β1Xt + ut and get the estimated parameters. If H0 is rejected, then our estimated
equations for two different periods are given by (xi) and (xii).

Section B

Answer three questions from this section.

Question 6

The Cobb–Douglas production function can be written as follows:

lnYt = α0 + α1 lnLt + α2 lnKt + ut; t = 1, 2, . . . , T (i)

where Yt is real output, Lt is a measure of labour input, Kt is a measure of real
capital input, and ut is an unobserved random disturbance with E(ut) = 0.

The following estimates of (i) were obtained by ordinary least squares (OLS) using
15 annual observations from the Taiwanese agricultural sector.

lnYt = −3.329 + 1.498 lnLt + 0.489 lnKt + et (ii)

(2.44) (0.54) (0.10)

where et are OLS residuals, standard errors are in parentheses and R2 = 0.89.

(a) Give an economic interpretation of the estimated coefficients. Are the estimated
slope parameters of the expected sign? Explain.

(4 marks)

(b) Test the slope parameters for significance, and explain what assumptions your
tests require in order to be valid.

(6 marks)

(c) If the Taiwanese agricultural sector has constant returns to scale then
α1 + α2 = 1. Discuss whether the estimates in (ii) support this restriction.

(3 marks)

(d) The equation was also estimated in the following restricted form

[lnYt − lnLt] = 1.712 + 0.612[lnKt − lnLt] + νt

(0.42) (0.09)

where νt are OLS residuals, standard errors are in parentheses and R2 = 0.77.

Test the restriction(s) in (iii), and show that (iii) incorporates the restriction of
constant returns to scale.

(7 marks)

11
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Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapters 2.6 (Testing hypotheses
relating to the regression coefficients) and 6.5 (Testing linear restriction).

Dougherty, C. Subject guide, Additional exercise sections A6.9 in Chapter 6 (Specification of
regression variables).

Gujarati, D.N. and D.C. Porter Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapters 5.8 (Hypothesis testing: Some practical aspects) and 7.9 (Cobb–Douglas production
function: More on functional form).

Approaching the question

(a) The interpretation of α1, α2 and α1 + α2 should be given. The solution is as follows:

The properties of the Cobb–Douglas production function are well-known.

α1 is the (partial) elasticity of output with respect to the labour input. Hence, a 1 per cent
increase in the labour input, holding capital constant, will increase output by 1.498 per cent,
on average.

Similarly, α2 is the (partial) elasticity of output with respect to the capital input, holding
the labour input constant. Hence, a 1 per cent increase in the capital input, holding labour
constant, will increase output by 0.489 per cent, on average.

The sum α1 + α2 gives information about the returns to scale; that is, the response of
output to a proportionate change in the inputs. The estimated slope parameters are of the
expected sign as both are positive – more input should produce more output.

(b) The significance of both slope parameters should be tested, and the assumptions should be
explicitly provided. The solution is as follows:

The t statistics are:

tα1
=

1.498

0.54
= 2.77 and tα2

=
0.489

0.10
= 4.89.

The 5 per cent critical values for the two-sided t distribution with 12 degrees of freedom are
±2.179. Hence, reject the null hypothesis in both cases. The test requires the following
assumptions:

• The model is linear in the parameters and correctly specified.

• There is some variation in the regressor in the sample.

• The disturbance term has zero expectation, i.e. E(ut) = 0 for all t.

• The disturbance term is homoscedastic, i.e. E(u2t ) = σ2
u for all t.

• The values of the disturbance term are independent, i.e. E(uiuj) = 0 for i 6= j.

• The disturbance term has a normal distribution.

(c) It should be mentioned that not enough information is given to test this restriction. The
solution is as follows:

The estimated coefficients sum to 1.987, which gives the value of the returns to scale. The
results suggest that, over the period of estimation, the Taiwanese agricultural sector was
characterised by increasing returns to scale. However, we do not know whether 1.987 is
significantly different from 1 without a formal statistical test, in which case we would need a
measure of the standard error of the sum of the coefficients, or use an F test.

(d) The F test for linear restriction should be used. The solution is as follows:

The F test is given by:

F =
(R2

U −R2
R)/q

(1−R2
U )/(n− k − 1)

=
(0.89− 0.77)/1

(1− 0.89)/12
= 13.09.

The 5 per cent critical value for F1, 12 is 4.75. Therefore, we reject the null hypothesis of
constant returns to scale, and so 1.987 is significantly different from 1.

12
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Equation (iii) incorporates the restriction of constant returns to scale as:

lnYt = α0 + α1 lnLt + α2 lnKt + νt

= α0 + (1− α2) lnLt + α2 lnKt + νt.

Re-arranging gives:
(lnYt − lnLt) = α0 + α2(lnKt − lnLt) + νt

which is the same as (iii).

Question 7

(a) Explain the problem of identification in the context of simultaneous equation
models.

(3 marks)

(b) In the model

y1t = αy2t + u1t

y2t = β1xt + β2y1t + u2t t = 1, 2, . . . , T

where xt is an exogenous variable.

i. Examine the identification of both equations.

(4 marks)

ii. Obtain the ordinary least squares estimator of α, and examine its consistency.

(7 marks)

iii. Derive the two-stage least squares of α and also prove its consistency stating
carefully any assumptions you need.

(3 marks)

(c) What is meant by indirect least squares? Explain.

(3 marks)

Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapters 9.2 (Simultaneous equations
bias) and 9.3 (Instrumental variable estimation).

Dougherty, C. Subject guide, Chapter 9 (Simultaneous equation estimation).

Gujarati, D.N. and D.C. Porter Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapter 19.3 (Rules of identification) and 20.4 (Estimation of an overidentified equation: The
method of two-stage least squares (2SLS)).

Approaching the question

(a) To answer this question, the order condition of identification should be used. The solution is
as follows:

Order Condition of Identification (Necessary condition of identification):

R ≥ G− 1

where:

R = the number of restrictions imposed on the equation under consideration

= in our case, the number of variables excluded from the equation.

G = the number of jointly dependent variables in the model

= the number of equations in the model.

13
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If:

R = G− 1 the equation under consideration is exactly identified

R > G− 1 the equation under consideration is over identified

R < G− 1 the equation under consideration cannot be identified.

(b) i. The concept of the order of identification given in part (a) should be used. The solution
is as follows:

In the first equation, R = 0 and G− 1 = 1, hence R < G− 1. Therefore, the equation is
under identified.

In the second equation, R = 1 and G− 1 = 1, hence R = G− 1. Therefore, the equation
is exactly identified.

ii. It is necessary to derive the OLS estimator. Also, the probability limit should be used to
examine consistency. The solution is as follows:

The OLS estimator of α is given by:

α̂ =

∑
y1ty2t∑
y22t

.

To show consistency we consider:

plim (α̂) =
plim

(
1
T

∑
y1ty2t

)
plim

(
1
T

∑
y22t
) = α+

plim
(
1
T

∑
y2tu1t

)
plim 1

T

∑
y22t

6= α

since:

plim

(
1

T

∑
y2tu1t

)
= plim

(
1

T

∑
(β1xt + β2y1t + u2t)u1t

)
6= 0

and:

plim

(
1

T

∑
y22t

)
6= 0.

This implies α̂OLS is an inconsistent estimator of α.

iii. It is necessary to derive the 2SLS estimator. Again, the probability limit should be used
to examine consistency. The solution is as follows:

The two-stage estimator of α is:

α̃ =

∑
y1tzt∑
y2tzt

where zt is the linear combination of instruments (in this case xt only). To show
consistency, we have:

plim (α̃) = plim

∑
y1tzt∑
y2tzt

= plim

∑
(αy2t + u1t)zt∑

y2tzt
= α+ plim

( 1
T

∑
ztu1t

1
T

∑
y2tzt

)

= α+
Cov(zt, u1t)

Cov(y2t, zt)

= α

since zt is correlated with y2t, but uncorrelated with u1t. The covariances given are the
population covariances.

(d) A brief discussion of the ILS estimator is required. The solution is as follows:

• Obtain the reduced form from the given simultaneous equation model. There is a
relationship between the reduced form (RF) parameters and the structural parameters.

• Estimate the RF parameters by OLS. The estimates will be consistent as in the RF all
explanatory variables are exogenous.

• As the RF parameters and the structural parameters are related, once the RF
parameters have been estimated, the estimates of the structural parameters can be
obtained. These estimates will be consistent.
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Question 8

A study of applications for home mortgages used the linear probability model

MORTi = β0 + β1INCi + β2AGEi + β3PROPi + ui; i = 1, 2, . . . , 700

where

MORTi = 1 if a mortgage is granted to the i-th applicant: 0 otherwise

INCi = income of the i-th applicant in thousands of pounds

AGEi = age of the i-th applicant in years

PROPi = age of the property for which the mortgage is being applied.

(a) The estimated coefficient for INCi was 1.02 with standard error 0.51. What is
the interpretation of this coefficient?

(4 marks)

(b) Why is R2 meaningless in probit and logit models? What measures of ‘goodness
of fit’ are applicable to probit and logit models?

(7 marks)

(c) Using a two variable linear model, show that the ordinary least squares
estimator will be heteroscedastic if the dependent variable takes only values 0
and 1.

(9 marks)

Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapters 10.1 (Linear probability
model) and 10.2 (Logit analysis).

Gujarati, D.N. and D.C. Porter Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapter 15.2 (The linear probability model (LPM)).

Approaching the question

(a) It is important to discuss that in the linear probability model the estimated probability of
an event occurring may be greater than one or less than zero. The solution is as follows:

t = 1.02/0.51 = 2 which is significantly different from 0. As income increases by £1000,
MORT increases by 1.02 units, but since the estimated MORT can be interpreted as a
probability, the prediction is likely to lie outside [0, 1].

(b) It should be discussed that as the dependent variable takes only two values, R2 is
meaningless. A brief discussion of the likelihood ratio test and pseudo-R2 should be given.
The solution is as follows:

The definition of R2 is:

R2 =
ESS

TSS
=

TSS− RSS

TSS
= 1− RSS

TSS

where TSS is the total sum of squares, ESS is the explained sum of squares, and RSS is the
residual sum of squares. Under logit and probit the dependent variable only takes two
values, 0 and 1, hence TSS will take different values dependent on the coding of ‘success’ or
‘failure’ even though the independent variables are the same.

The possibilities for measuring goodness of fit are (i) the pseudo-R2 defined by
1− (lnL/ lnL0), where lnL is the unrestricted log-likelihood and lnL0 is the log-likelihood
that would have been obtained with only the intercept in the regression. This has a

15
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minimum of 0, but the maximum will be less than 1 and, unlike R2, it does not have a
natural interpretation.

The alternative is (ii) the likelihood ratio statistic defined by 2 ln(L/L0) = 2[lnL− lnL0],
which has in large samples a chi-squared distribution with q degrees of freedom, where q is
the number of restrictions imposed by the null hypothesis. The null hypothesis is that the
coefficients of the variables are all jointly zero.

The parameters of lnL are estimated by maximum likelihood under the alternative
hypothesis, and lnL0 is estimated by maximum likelihood under the null hypothesis.

(c) It is necessary to derive the variance of the disturbance term. The solution is as follows:

Let the model be:
Yi = β0 + β1Xi + ui; i = 1, 2, . . . , n (i)

where:

Yi =

{
1 if the event occurs

0 if not.

As Yi takes only two values, 1 or 0, ui can take only two values: 1− β0 − β1Xi when Yi = 1,
and −β0 − β1Xi when Yi = 0. Based on this we can write the probability distribution of ui
as:

Yi ui f(ui)
1 1− β0 − β1Xi β0 + β1Xi

0 −β0 − β1Xi 1− β0 − β1Xi

This probability distribution also satisfies the assumption that:

E(ui) = (1− β0 − β1Xi)(β0 + β1Xi) + (−β0 − β1Xi)(1− β0 − β1Xi) = 0.

We can write Var(ui) as:

Var(ui) = E(u2i ) = (1− β0 − β1Xi)
2(β0 + β1Xi) + (−β0 − β1Xi)

2(1− β0 − β1Xi)

= (1− β0 − β1Xi)(β0 + β1Xi)[(1− β0 − β1Xi) + (β0 + β1Xi)]

= (β0 + β1Xi)(1− β0 − β1Xi)

= E(Yi)[1− E(Yi)]

= Pi(1− Pi), for all i = 1, 2, . . . , n.

Hence the disturbance term is heteroscedastic. This will make the OLS estimators inefficient.

Question 9

(a) Explain the meaning of spurious regression.

(4 marks)

(b) The following equations were estimated by ordinary least squares.

Yt = 3.0920 + 0.6959Xt + ût (1)

(0.1305) (0.0103)

R2 = 0.99, F = 4523.25, s = 0.0236, DW = 0.557, T = 740.

∆ût = −0.2161ût−1 + 0.2349∆ût−1 + 0.2029∆ût−2 + ε̂t (2)

(0.0845) (0.1592) (0.1631)

R2 = 0.1799; s = 0.0115; T = 737.

Where s is the standard error of the residuals, T is the number of observations,
ût and ε̂t are OLS residuals, and standard errors are in parentheses.
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Do the results above indicate that Yt and Xt are cointegrated? Specify clearly
all the assumptions you have made.

(6 marks)

[Note: Critical value at 5% significant level from MacKinnon table is −3.3377].

(c) Consider a model

yt = ut + θ1ut−1 + θ2ut−2; t = 1, 2, . . . , T

E(ut) = 0; E(u2
t ) = σ2; and E(usut) = 0 for all s, t = 1, 2, . . . , T.

i. Is yt stationary? Explain.

(5 marks)

ii. Calculate the autocorrelation function of yt.

(5 marks)

Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapters 13.1 (Stationarity and
nonstationarity), 13.2.(Spurious regressions) 13.3 (Graphical techniques for detecting
nonstationarity) and 13.5 (Cointegration).

Dougherty, C. Subject guide, Chapter 13 (Introduction to nonstationary time series).

Gujarati, D.N. and D.C. Porter Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapter 21.3 (Stochastic Processes), 21.8 (Tests for stationarity) and 21.11 (Cointegration:
Regression of a unit root time series on another unit root time series).

Approaching the question

(a) The concept of spurious regression should be explained with a simple model. The solution is
as follows:

Spurious regression was first demonstrated by Granger and Newbold who showed, using
Monte Carlo techniques, that a regression involving 2 non-stationary series could give rise to
spurious results, in that the t statistics over-rejected the null hypothesis of a zero coefficient
for 2 independent random walk series.

If Yt and Xt are non-stationary and we regress Yt on Xt, that is:

Yt = π0 + π1Xt + vt

then even if there is no relationship between Yt and Xt, the regression will produce a t ratio
which will reject the null hypothesis H0 : π1 = 0.

The reason for this result is that if H0 : π1 = 0 then:

Yt = π0 + vt.

Suppose Yt is I(1). Since Yt is I(1) and π0 is constant, it follows that vt must be I(1). This
violates the standard distributional theory based on the assumption that vt is stationary, i.e.
vt is I(0). Hence the misleading result.

(b) A clear concept of cointegration is required, and the assumptions should be stated explicitly.
The solution is as follows:

We test:
H0 : No cointegration vs. H1 : Cointegration.

The cointegration test statistic is −0.2161/0.0845 = −2.557.

The 5 per cent critical value given in the MacKinnon table is −3.3377. Therefore, we cannot
reject the null hypothesis of no cointegration.

The main assumption is that the error terms in both equations have constant variances and
no serial correlation. We also need to assume that the specifications are correct (for
example, no structural breaks).
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(c) It should be shown that the mean, variance and covariances are independent of time. Part
(ii) is based on part (i). The solution is as follows:

i. We have:

E(yt) = 0

Var(yt) = E(y2t )

= E(ut + θ1ut−1 + θ2ut−2)2

= E(u2t ) + θ21E(u2t−1) + θ22E(u2t−2); as E(usut) = 0 if s 6= t

= (1 + θ21 + θ22)σ2

Cov(y1, yt−1) = E(ytyt−1)

= E(ut + θ1ut−1 + θ2ut−2)(ut−1 + θ1ut−2 + θ2ut−3)

= (θ1 + θ1θ2)σ2

Cov(y1, yt−2) = E(ytyt−2)

= E(ut + θ1ut−1 + θ2ut−2)(ut−2 + θ1ut−3 + θ2ut−4)

= θ2σ
2

Cov(yt, yt−s) = E(ytyt−s) = 0 for all s > 2.

Hence as the mean, variance and covariances are constant over time, yt is weakly
stationary. If the uts are normally distributed then this also implies strong stationarity.

(ii) The autocorrelation function is defined as:

ρs =
Cov(yt, yt−s)√

Var(yt)
√

Var(yt−s)
=

Cov(yt, yt−s)

Var(yt)
; as Var(yt) = Var(yt−s).

Hence:

ρs =


1 if s = 0
θ1+θ1θ2
1+θ21+θ

2
2

if s = 1
θ2

1+θ21+θ
2
2

if s = 2

0 if s > 2.

Question 10

Let the regression equation be

Yt = β1 + β2Xt + ut; t = 1, 2, . . . , T

where

ut = ρut−1 + εt for all t; |ρ| < 1

E(εt) = 0

E(εsεt) = σ2
s if s = t

= 0 if s 6= t

(a) Derive

i. the variance of ut; and

ii. E(utut−1).

(7 marks)
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(b) Explain the consequences of this model specification on ordinary least squares
estimators for β1 and β2.

(3 marks)

(c) Explain how would you test the null hypothesis H0 : ρ = 0 against the
alternative H1 : ρ 6= 0. Specify all the assumptions needed for this test.

(5 marks)

(d) Discuss in detail a method of estimation which gives best linear unbiased
estimates of β1 and β2.

(5 marks)

Reading for this question

Dougherty, C. Introduction to econometrics. (4th edition) Chapters 12.1 (Definition and
consequences of autocorrelation), 12.2 (Detection of autocorrelation) and 12.3 (Fitting a model
subject to AR(1) autocorrelation).

Dougherty, C. Subject guide, Chapter 12 (Properties of regression models with time series data).

Gujarati, D.N. and D.C. Porter Basic econometrics. (5th edition) [ISBN 9780071276252],
Chapters 12.4 (Consequences of using OLS in the presence of autocorrelation) and 12.6
(Detecting autocorrelation).

Approaching the question

(a) i. It is necessary to derive the variance and covariance of ut. For finding these it has to be
shown that E(ut) = 0. We have:

ut = ρut−1 + εt

which can be written in lag operator form as:

(1− ρL)ut = εt

or:

ut = (1− ρL)−1εt = (1 + ρL+ ρ2L2 + · · · )εt = εt + ρεt−1 + ρ2εt−2 + · · · .

Therefore, the variance of ut is:

Var(ut) = (1 + ρ2 + ρ4 + · · · )σ2
ε =

σ2
ε

1− ρ2
.

ii. We have:

utut−1 = (εt + ρεt−1 + ρ2εt−2 + · · · )(εt−1 + ρεt−2 + ρ2εt−3 + · · · )

= [εt + ρ(εt−1 + ρεt−2 + · · · )](εt−1 + ρεt−2 + ρ2εt−3 + · · · )

= εt(εt−1 + ρεt−2 + ρ2εt−3 + · · · ) + ρ(εt−1 + ρεt−2 + ρ2εt−3 + · · · )2

Hence:

E(utut−1) = ρ(1 + ρ2 + ρ4 + · · · )σ2
ε =

ρσ2
ε

1− ρ2
.

(b) It should be explained for which properties OLS holds and also the properties for which
OLS does not hold. The solution is as follows:

The effect of serially correlated errors is to produce unbiased and consistent, but inefficient,
parameter estimates. The standard errors are incorrect leading to invalid t tests. Hence the
estimates of β1 and β2 will be unbiased and consistent, but inefficient.
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(c) This question is based on the Durbin–Watson test, whose assumptions should be stated
clearly. The solution is as follows:

Durbin–Watson (DW) Statistic

The DW statistic is defined as:

DW =

T∑
t=2

(ût − ût−1)2

T∑
t=1

û2t

.

The Durbin–Watson statistic can be applied only if:

• the disturbance term follows an AR(1) process

• the model has an intercept term

• there is no lagged dependent variable as an explanatory variable.

In the Durbin–Watson table (which can be found in the appendix of any econometrics book)
there are two values:

dL = lower limit

dU = upper limit.

We have:

DW < dL ⇒ positive autocorrelation

DW > 4− dL ⇒ negative autocorrelation

dL ≤ DW ≤ dU ⇒ no conclusion

4− dU ≤ DW ≤ 4− dL ⇒ no conclusion.

(d) As ρ is unknown, the Cochrane–Orcutt method of estimation, or Prais–Winstein method of
estimation, should be used. The solution is as follows:

Cochrane–Orcutt method of estimation

For simplicity assume the model is:

Yt = β0 + β1Xt + ut; t = 1, 2, . . . , T (i)

and:

ut = ρut−1 + εt

with E(εt) = 0, E(ε2t ) = σ2
ε and E(εsεt) = 0 for s 6= t.

This means that the disturbance term, ut, follows an AR(1) process.

Lag (i) by one period and multiply by ρ to get:

ρYt−1 = ρβ0 + ρβ1Xt−1 + ρut−1. (ii)

Subtract (ii) from (i), to get:

Yt − ρYt−1 = (1− ρ)β0 + β1(Xt − ρXt−1) + ut − ρut−1. (iii)

The disturbance term in (iii) is ut − ρut−1 = εt, which is a well-behaved disturbance term.
Hence if ρ is known, OLS can be applied to (iii) to obtain the best linear unbiased
estimators of β0 and β1.

If ρ is not known, (iii) cannot be estimated as such. Estimation of the parameters requires
the following steps:

• Apply OLS to (i) to obtain ût.
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• Apply OLS to ût = ρût−1 + εt to obtain the OLS estimator of ρ:

ρ̂ =

T∑
t=2

ûtût−1

T∑
t=2

û2t−1

.

Replace ρ in (iii) by ρ̂ and apply OLS to get β̂0 and β̂1.

• Obtain a new set of residuals by replacing β0 and β1 in (i) by β̂0 and β̂1 as:

ũ = Yt − β̂0 − β̂1Xt.

• Repeat steps (b) to (d). Keep on doing so until the estimate of ρ converges, which will
be the final estimate of ρ. Denote this as ρ̂F .

• Replace ρ in (iii) by the final estimate of ρ, i.e. by ρ̂F . Apply OLS to (iii) to obtain the
final estimates of β0 and β1.
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